Large-scale Structural Reranking for Hierarchical Text Categorization

نویسنده

  • Qi Ju
چکیده

Current hierarchical text categorization (HTC) methods mainly fall into three directions: (1) Flat one-vs.-all approach, which flattens the hierarchy into independent nodes and trains a binary one-vs.-all classifier for each node. (2) Top-down method, which uses the hierarchical structure to decompose the entire problem into a set of smaller subproblems, and deals with such sub-problems in top-down fashion along the hierarchy. (3) Big-bang approach, which learns a single (but generally complex) global model for the class hierarchy as a whole with a single run of the learning algorithm. These methods were shown to provide relatively high performance in previous evaluations. However, they still suffer from two main drawbacks: (1) relatively low accuracy as they disregard category dependencies, or (2) low computational efficiency when considering such dependencies. In order to build an accurate and efficient model we adopted the following strategy: first, we design advanced global reranking models (GR) that exploit structural dependencies in hierarchical multi-label text classification (TC). They are based on two algorithms: (1) to generate the k-best classification of hypotheses based on decision probabilities of the flat one-vs.-all and top-down methods; and (2) to encode dependencies in the reranker by: (i) modeling hypotheses as trees derived by the hierarchy itself and (ii) applying tree kernels (TK) to them. Such TK-based reranker selects the best hierarchical test hypothesis, which is naturally represented as a labeled tree. Additionally, to better investigate the role of category relationships, we consider two interesting cases: (i) traditional schemes in which node-fathers include all the documents of their child-categories; and (ii) more general schemes, in which children can include documents not belonging to their fathers. Second, we propose an efficient local incremental reranking model (LIR), which combines a top-down method with a local reranking model for each sub-problem. These local rerankers improve the accuracy by absorbing the local category dependencies of subproblems, which alleviate the errors of top-down method in the higher levels of the hierarchy. The application of LIR recursively deals with the sub-problems by applying the corresponding local rerankers in top-down fashion, resulting in high efficiency. In addition, we further optimize LIR by (i) improving the top-down method by creating local dictionaries for each sub-problem; (ii) using LIBLINEAR instead of LIBSVM; and (iii) adopting the compact representation of hypotheses for learning the local reranking model. This makes LIR applicable for large-scale hierarchical text categorization. The experimentation on different hierarchical datasets has shown promising enhancements by exploiting the structural dependencies in large-scale hierarchical text categorization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Topic Dependencies in Hierarchical Text Categorization

In this paper, we encode topic dependencies in hierarchical multi-label Text Categorization (TC) by means of rerankers. We represent reranking hypotheses with several innovative kernels considering both the structure of the hierarchy and the probability of nodes. Additionally, to better investigate the role of category relationships, we consider two interesting cases: (i) traditional schemes in...

متن کامل

Hierarchical Multi-Label Text Categorization with Global Margin Maximization

Text categorization is a crucial and wellproven method for organizing the collection of large scale documents. In this paper, we propose a hierarchical multi-class text categorization method with global margin maximization. We not only maximize the margins among leaf categories, but also maximize the margins among their ancestors. Experiments show that the performance of our algorithm is compet...

متن کامل

Experimental Assessment of a Threshold Selection Algorithm for Tuning Classifiers in the Field of Hierarchical Text Categorization

Text Categorization is the task of assigning predefined categories to text documents. It can provide conceptual views of document collections and has many important applications in the real world. Nowadays, most of the research on text categorization has focused on mapping text documents to a set of categories among which structural relationships hold. Without loss of generality, let us assume ...

متن کامل

Ensembles of Sparse Multinomial Classifiers for Scalable Text Classification

Machine learning techniques face new challenges in scalability to large-scale tasks. Many of the existing algorithms are unable to scale to potentially millions of features and structured classes encountered in web-scale datasets such as Wikipedia. The third Large Scale Hierarchical Text Classification evaluation (LSHTC3) evaluated systems for multi-label hierarchical categorization of Wikipedi...

متن کامل

A Comparative Experimental Assessment of a Threshold Selection Algorithm in Hierarchical Text Categorization

Most of the research on text categorization has focused on mapping text documents to a set of categories among which structural relationships hold, i.e., on hierarchical text categorization. For solutions of a hierarchical problem that make use of an ensemble of classifiers, the behavior of each classifier typically depends on an acceptance threshold, which turns a degree of membership into a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013